Cell interactions with hierarchically structured nano-patterned adhesive surfaces.

نویسندگان

  • Marco Arnold
  • Marco Schwieder
  • Jacques Blümmel
  • Elisabetta A Cavalcanti-Adam
  • Mónica López-Garcia
  • Horst Kessler
  • Benjamin Geiger
  • Joachim P Spatz
چکیده

The activation of well-defined numbers of integrin molecules in predefined areas by adhesion of tissue cells to biofunctionalized micro-nanopatterned surfaces was used to determine the minimum number of activated integrins necessary to stimulate focal adhesion formation. This was realized by combining micellar and conventional e-beam lithography, which enabled deposition of 6 nm large gold nanoparticles on predefined geometries. Patterns with a lateral spacing of 58 nm and a number of gold nanoparticles, ranging from 6 to 3000 per adhesive patch, were used. For α(v) β(3)-integrin activation, gold nanoparticles were coated with c(-RGDfK-)-thiol peptides, and the remaining glass surface was passivated to prevent non-specific protein adsorption and cell adhesion. Results show that focal adhesion formation is dictated by the underlying hierarchical nanopattern. Adhesive patches with side lengths of 3000 nm and separated by 3000 nm, or with side lengths of 1000 nm and separated by 1000 nm, containing approximately 3007 ± 193 or 335 ± 65 adhesive gold nanoparticles, respectively, induced the formation of actin-associated, paxillin-rich focal adhesions, comparable in size and shape to classical focal adhesions. In contrast, adhesive patches with side lengths of 500, 250 or 100 nm, and separated from adjacent adhesive patches by their respective side lengths, containing 83 ± 11, 30 ± 4, or 6 ± 1 adhesive gold nanoparticles, respectively, showed a significant increase in paxillin domain length, caused by bridging the pattern gap through an actin bundle in order to mechanically, synergistically strengthen each single adhesion site. Neither paxillin accumulation nor adhesion formation was induced if less than 6 c(-RGDfK-)-thiol functionalised gold nanoparticles per adhesion site were presented to cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth.

Central nervous system (CNS) neurons, unlike those of the peripheral nervous system, do not spontaneously regenerate following injury. Recently it has been shown that in the developing CNS, a combination of cell-adhesive and cell-repulsive cues guide growing axons to their targets. We hypothesized that by mimicking these guidance signals, we could guide nerve cell adhesion and neurite outgrowth...

متن کامل

Bio-inspired hierarchically structured polymer fibers for anisotropic non-wetting surfaces

We demonstrate a rice leaf-like hierarchically textured polymer fiber array for anisotropic non-wetting surfaces. To provide superhydrophobicity in addition to the anisotropic behavior, fiber surfaces are spray coated with organically modified silica nanoparticles. The resulting micro/nano hierarchically structured fiber surfaces demonstrate anisotropic non-wetting properties. We designed vario...

متن کامل

Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates.

This paper describes the formation of patterned cell co-cultures using the layer-by-layer deposition of synthetic ionic polymers and without the aid of adhesive proteins/ligands such as collagen or fibronectin. In this study, we used synthetic polymers, namely poly(diallyldimethylammonium chloride) (PDAC) and sulfonated polystyrene (SPS) as the polycation and polyanion, respectively, to build t...

متن کامل

Micropatterned surfaces to study hyaluronic acid interactions with cancer cells.

Cancer invasion and progression involves a motile cell phenotype, which is under complex regulation by growth factors/cytokines and extracellular matrix (ECM) components within the tumor microenvironment. Hyaluronic acid (HA) is one stromal ECM component that is known to facilitate tumor progression by enhancing invasion, growth, and angiogenesis(1). Interaction of HA with its cell surface rece...

متن کامل

Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing.

Cell interactions with adhesive surfaces play a vital role in the regulation of cell proliferation, viability, and differentiation, and affect multiple biological processes. Since cell adhesion depends mainly on the nature and density of the adhesive ligand molecules, spatial molecular patterning, which enables the modulation of adhesion receptor clustering, might affect both the structural and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2009